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The operator notation previously developed to analyze vibrations of continuous systems
has been further generalized to model a system with an arbitrary number of coupled
di!erential equations. Linear parts of the equations are expressed with an arbitrary linear
di!erential and/or integral operators, and non-linear parts are expressed with arbitrary
quadratic and cubic operators. Equations of motion are solved in their general form using
the method of multiple scales, a perturbation technique. The case of primary resonances of
the external excitation and one-to-one internal resonances between the natural frequencies
of the equations is considered. The algorithm developed is applied to a non-linear cable
vibration problem having small sag-to-span ratios.

( 2001 Academic Press
1. INTRODUCTION

A new operator notation suitable for perturbative calculations has been developed to
analyze, in a general sense, vibrations of continuous systems by Pakdemirli [1]. One-mode
approximation of a continuous system with arbitrary quadratic and cubic non-linearities
was considered in that analysis. In"nite mode analysis of the same system was later
performed by Pakdemirli and Boyaci [2]. Using the same model of di!erential equation,
Pakdemirli and Boyaci [3] treated the subharmonic, superharmonic and combination
resonances cases in detail. A model of a coupled partial di!erential system with arbitrary
quadratic and cubic non-linearities was solved later [4]. Two di!erent versions of the
method of multiple scales were compared using general models, one with an arbitrary cubic
operator and the other with arbitrary quadratic and cubic operators [5]. Using the same
concept of operator notation, arbitrary odd-non-linearity models were also considered
[6, 7].

In this study, the previous work is generalized to a system of an arbitrary number of
coupled partial di!erential equations. The dimensionless equations of motion are
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where n is the free index with n"1, 2,2, N, N being the number of equations. Summation
is carried out over all other indices m, p and q from 1 to N. d denotes the usual Kronecker
delta function. kL

n
are the viscous damping coe$cients. The linear parts of the equations are

expressed by operator L
n
and are uncoupled. The quadratic and cubic non-linearities are

expressed by an arbitrary spatial di!erential and/or integral operators by Q
nmp

and
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C
nmpq

respectively. In a system of N equations, there are at most N3 quadratic and N4 cubic
operators. The external excitation is assumed to be applied to the "rst equation only. FK

n
and

X are the external excitation amplitude and frequency respectively. The quadratic and cubic
operators possess the property of being multilinear so that
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where c
i
are the arbitrary constants or time-varying coe$cients. This property is essential in

perturbative calculations and re#ects well the properties of the original quadratic and cubic
non-linearities.

It is assumed that the boundary conditions for equation (1) are linear, homogenous and
free from time derivatives; that is

B1 (wn
)"0 at x"0, B2 (wn

)"0 at x"1, (3)

where B1 and B2 are the arbitrary spatial linear operators.
Any continuous system having viscous damping and external excitation modelled with

an arbitrary number of partial di!erential equations having non-linearities of a quadratic
and cubic type can be represented by the general format given by equations (1) and (3). The
model excludes visco-elastic e!ects, non-linear inertial e!ects and gyroscopic e!ects.
Non-linear boundary conditions and multi-frequency excitations are also excluded.

2. A GENERAL APPROXIMATE SOLUTION

Equations (1) and (3) can be solved in its general form by applying the method of multiple
scales [8, 9] directly to the di!erential equation system. The case of primary resonances of
the external excitation and one-to-one internal resonances between the natural frequencies
of the equations will be considered. Other types of internal resonances can be considered in
a similar way. Assume approximate expansions of the form
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where e is the small dimensionless measure of the de#ections w
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"t the usual fast time

scale and ¹
2
"e2t the slow time scale. The later analysis shows that there is no ¹

1
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dependence, hence it is omitted from the beginning. Assuming a weakly non-linear system,
damping and excitation coe$cients are ordered so that their e!ects balance the cubic
non-linearities [9]
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where D
k
"L/L¹

k
. Substituting equations (4)} (6) into equations (1) and separating at each

order of e, "nally gives
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At order e, the solutions are
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where c.c. stands for the complex conjugate of the preceding terms and >
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where u
n
are the eigenvalues and >

n
are the corresponding eigenfunctions. It is well known

[8, 9] that when there is damping in the system, the modes that are not excited through the
external frequency or through internal resonances decay in time. In the system considered, it
is assumed that one of the natural frequencies of the "rst equation is excited through
external excitation (primary resonance case is considered) and the energy of that mode is
transferred to other modes of the remaining equations through internal resonances in such
a way that one mode is activated through internal resonances in each equation.

Substituting solutions (10) at order e to the right-hand side of the equations at order e2,
gives solutions of the form
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There are N3 equations in each line above. For solutions (12), summation should be carried
out over indices m and p.

At order e3, it is assumed that the external excitation frequency is close to the natural
frequency of the "rst equation and all natural frequencies of other equations are excited
through one-to-one internal resonances; that is

X"u
1
#e2o, u

n
"u

1
#e2p

n
(p

1
"0), (15, 16)

where o and p
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are detuning parameters of O (1). Since the homogenous parts of equations

(9) have non-trivial solutions, the inhomogenous equations (9) have a solution only if
a solvability condition is satis"ed [8]. To "nd this condition, their solution is expressed in
the form
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solutions without small-divisor terms. Substituting the solutions at order e and e2 and
equations (15)} (17) into equation (9), "nally gives
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Assuming that the linear operators L
n

with the associated boundary conditions are
self-adjoint, the solvability conditions for equations (18) are
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Representing the solutions in this general form makes it convenient to see explicitly the
contributions of each operator to the coe$cients. :1
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arriving at equation (19) which determines modulations of the complex amplitudes A
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can be calculated numerically for speci"c operators.
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Expressing the complex amplitudes in the polar form
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The "nal approximate solutions for the problem are
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where summation should be carried out over the indices m and p. The real amplitudes
a
n

and phases c
n

in equations (26) are governed by equations (23) and (24). This general
solution algorithm will be applied to a speci"c problem in the next section.

3. APPLICATION TO A CABLE VIBRATION PROBLEM

In this section, the formalism derived in the previous section will be applied to
a non-linear cable vibration problem with small sag-to-span ratios. Following the previous
analysis, primary resonances of the external excitation and one-to-one internal resonances
between the natural frequencies of the in-plane and out-of-plane vibrations will be
investigated. The equations of motion "rst derived by Lee and Perkins [10] are
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where x is the dimensionless arclength co-ordinate and prime denotes di!erentiation with
respect to x. The constants v
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and longitutional waves respectively. w
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is the out-of-plane
displacement.
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The operators in equations (1) take the following form for this speci"c example:
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Assuming expansions (4) for the displacements, solutions (10) are obtained for the linear
problem, where eigenfunctions>

n
(x) satisfy equations (11), or substituting the speci"c forms

of the linear operators from equation (28) gives
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Equation (29) with boundary conditions possesses two types of solutions, namely the
symmetric and the antisymmetric in-plane solutions with respect to the mid-span of the
cable. The symmetric in-plane solution is
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where u
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satis"es the equation
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The symmetric in-plane solution can account for stretching of the cable whereas the
anti-symmetric solution corresponds to the zero stretching case [10].
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At order e3, the solvability conditions given in equations (19) are obtained, where the a
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equations (20), gives the coe$cients
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2
b
6
#2b

1
b
8
#2b

3
b
6
#4b

1
b
9
)!

3

2
v2
l
b2
6H ,

a
1122

"!G
v2
l

v2
t

(b
4
b
6
#2b

1
b
10
#b

1
b
13

)!
1

2
v2
l
b
6
b
7H ,

a
1212

"!G
v2
l

v2
t
A
1

2
b
1
b
12
#

1

2
b
1
b
13
#b

5
b
6
#2b

1
b
11B!

1

2
v2
l
b
6
b
7H ,
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a
1221

"!G
v2
l

v2
t
A
1

2
b
1
b
12
#b

5
b
6
#2b

1
b
11
#

1

2
b
1
b
13B!

1

2
v2
l
b
6
b
7H ,

a
2112

"!G
v2
l

v2
t

(b
1
b
12
#b

1
b
13
#b

3
b
7
)!

1

2
v2
l
b
6
b
7H , (38)

a
2121

"!G
v2
l

v2
t

(b
3
b
7
)!

1

2
v2
l
b
6
b
7H , a

2211
"!G

v2
l

v2
t

(b
2
b
7
#b

1
b
13

)!
1

2
v2
l
b
6
b
7H ,

a
2222

"!G
v2
l

v2
t

(b
4
b
7
#2b

5
b
7
)!

3

2
v2
l
b2
7H ,

a
1112

"a
1121

"a
1211

"a
1222

"a
2111

"a
2122

"a
2212

"a
2221

"0,

where

b
1
"P

1

0

>
1
dx, b

2
"P

1

0

m
111

dx, b
3
"P

1

0

g
111

dx,

b
4
"P

1

0

m
122

dx, b
5
"P

1

0

g
122

dx, b
6
"P

1

0

>@2
1

dx

b
7
"P

1

0

>@2
2

dx, b
8
"P

1

0

>@
1
m@
111

dx, b
9
"P

1

0

>@
1
g@
111

dx, b
10
"P

1

0

>@
1
m@
122

dx,

b
11
"P

1

0

>@
1
g@
122

dx, b
12
"P

1

0

>@
2
m@
221

dx, b
13
"P

1

0

>@
2
g@
221

dx. (39)

From equations (26), and substituting the speci"c forms, the approximate solutions are
found to be

w
1
(x, t)"ea

1
cos(Xt!c

1
)>

1
(x)#

e2
2

Ma2
1
[cos(2(Xt!c

1
))m

111
(x)#g

111
(x)]

#a2
2
[cos(2(Xt!c

2
))m

122
(x)#g

122
(x)]N#O(e3 ), (40)

w
2
(x, t)"ea

2
cos(Xt!c

2
)>

2
(x)#

e2
2

Ma
1
a
2
[cos(2Xt!c

1
!c

2
)m

221
(x)

#cos(c
1
!c

2
)g

221
(x)]N#O(e3), (41)
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where the amplitudes and phases are governed by equations (23) and (24). Substituting the
speci"c forms, the amplitude and phase modulation equations take the following form:

a@
1
"!

1

2
k
1
a
1
!

1

8u
1

a
1122

a
1
a2
2
sin(2(c

1
!c

2
))#

f
1

2u
1

sin c
1
,

a@
2
"!

1

2
k
2
a
2
!

1

8u
2

a
2211

a2
1
a
2
sin(2(c

2
!c

1
)), (42)

c@
1
"o!

1

8u
1

a
1111

a2
1
!

1

8u
1

(a
1212

#a
1221

)a2
2

!

1

8u
1

a
1122

a2
2
cos(2(c

1
!c

2
))#

f
1

2a
1
u

1

cos c
1
,

c@
2
"o!p

2
!

1

8u
2

(a
2112

#a
2121

)a2
1
!

1

8u
2

a
2211

a2
1

cos(2(c
2
!c

1
))!

1

8u
2

a
2222

a2
2

.

With the proper transformations, the results presented here are fully compatible with those
given in references [4, 11]. Reference [11] includes a detailed stability and bifurcation
analysis of the amplitude and phase modulation equations.

4. CONCLUDING REMARKS

The operator notation previously developed to treat vibration problems in a general
sense has been generalized to express a system of N coupled di!erential equations.
The model is a generalization of many vibration problems in continuous systems.
Approximate solutions of the model are presented in a general form so that an algorithm
can be constructed for solutions of a wide range of speci"c problems. As an illustration, the
algorithm is used to solve a non-linear cable vibration problem.

In this study only the arbitrary linear and homogenous boundary conditions are
considered. Non-linear boundary conditions can be added as a next step. Di!erent internal
resonance cases other than one-to-one can be considered in a similar way. Numerical
solutions can be sought when it is hard to "nd explicitly the functions appearing at the "rst
and second orders of approximation. This will not involve any problem at the last level of
approximation, since the coe$cients of the modulation equations are presented in a suitable
way to allow further numerical calculations.
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